

### গণপ্রজাতন্ত্রী বাংলাদেশ সরকার পানি সম্পদ মন্ত্রণালয় নদী গবেষণা ইনস্টিটিউট http://www.rri.gov.bd



২০ কার্তিক ১৪৩০ বঙ্গাব্দ তারিখ: ০৫ নভেম্বর ২০২৩ খ্রিস্টাব্দ

স্মারক নম্বর: ৪২.০৩.০০০০.১১১.১৬.০০১.১৮.৩৬

বিষয়: বিষয়ঃ পলল পরীক্ষা সংক্রান্ত রিপোর্ট- সেড-০৫ (২০২৩-২০২৪) ও এতদসংক্রান্ত বিল প্রসঞ্চো

স্ত্র: উপবিভাগীয় প্রকৌশলী, ফরিদপুর পানি বিজ্ঞান উপবিভাগের স্মারক নং-২এস-২/৩৯৬, তারিখঃ ১৮/০৯/২০২৩ খ্রি.

উপরোক্ত বিষয়ের আলোকে আপনাকে জানানো যাছে যে, আপনার পরিমাপ বিভাগের আওতাধীন ৩৯ গঙ্গা নদীর ৯১.৯ এল বারুরিয়া স্টেশনে, ৪২ গড়াই-মধুমতি নদীর ১০১বি কামারখালী স্টেশনে, ০৩ আড়িয়ালখা নদীর ৪এ অফটেক স্টেশনে ও ৬১.৫ কির্তীনাশা নদীর ৩৫০ রাজগঞ্জ স্টেশনে জুলাই ২০২৩ খ্রি. হতে আগস্ট ২০২৩ খ্রি. সময়ে সংগৃহীত সর্বমোট ২৬ (ছাব্দিশ) টি পলল নমুনা নদী গবেষণা ইনস্টিটিউটের পলল গবেষণাগারে গৃহীত হয় ও বিশ্লেষণ করা হয়। উক্ত পলল পরীক্ষা সংক্রান্ত রিপোর্ট- সেড-০৫ (২০২৩-২০২৪) ও এতদসংক্রান্ত ২১৪৫০/= (একুশ হাজার চারশত পঞ্চাশ) টাকা মাত্র এর একটি বিল প্রেরণ করা হলো।

এমতাবস্থায়, বিলটি একাউন্টপেয়ী ক্রস চেকের মাধ্যমে "মহাপরিচালক, নদী গবেষণা ইনস্টিটিউট, ফরিদপুর"-এর অনুকূলে পরিশোধ করার জন্য অনুরোধ করা হলো।

সংযুক্তিঃ \_ ১। রিপোর্ট নং- সেড-০৫ (২০২৩-২০২৪) \_ ১ কপি। ২। বিল নং- সেড- ০৫ (২০২৩-২০২৪) \_ ২ কপি।

> ০৫-১১-২০২৩ উমা সাহা পরিচালক (অতিরিক্ত দায়িত্ব) ০২৪৭৮৮০২৪৫৬ (ফোন) ০২৪৭৮৮০৩০৬৫ (ফ্যাক্স)

নির্বাহী প্রকৌশলী, দক্ষিণ-পশ্চিমাঞ্চলীয় পরিমাপ বিভাগ ভূ-পাবি-১, বাংলাদেশ পানি উন্নয়ন বোর্ড গোয়ালচামট, ফরিদপুর।।

২০ কার্তিক ১৪৩০ বঞ্চাব্দ তারিখ: ০৫ নভেম্বর ২০২৩ খ্রিস্টাব্দ

স্মারক নম্বর: ৪২.০৩.০০০০.১১১.১৬.০০১.১৮.৩৬/১ (৬)

#### সদয় জ্ঞাতার্থে/জ্ঞাতার্থে(জ্যেষ্ঠতার ক্রমানুসারে নয়):

- ১। মুখ্য বৈজ্ঞানিক কর্মকর্তা, পলল, রসায়ন ও পানি দৃষণ বিভাগ, নগই, ফরিদপুর, রিপোর্ট ১ কপি;
- ২। উপবিভাগীয় প্রকৌশলী, ফরিদপুর পানি বিজ্ঞান উপবিভাগ, বাপাউবো, ফরিদপুর;
- ৩। লাইব্রেরিয়ান, নগই, ফরিদপুর, রিপোর্ট-১ কপি;
- ৪। মহাপরিচালকের একান্ত মহাপরিচালক, নগই, ফরিদপুর;
- ৫। হিসাব রক্ষণ কর্মকর্তা, নগই, ফরিদপুর, বিল- ১ কপি এবং
- ৬। অফিস/মাস্টার কপি।।



সকল সংযুক্তিসমূহ:

(\$) Report SED-05 (2023-24)

০৬-১১-২০২৩

ড. প্রকৌ. ফাতেমা রোকশানা মুখ্য বৈজ্ঞানিক কর্মকর্তা

Perlehano



### SOIL TESTING REPORT

PROJECT: River Bed's Soil Sample Test of Sandwip Channel and Feni River

LOCATION: Sandwip Channel and Feni River

# GEOTECHNICAL RESEARCH DIRECTORATE SOIL MECHANICS AND GROUND WATER DIVISION REPORT NUMBER: SOIL – 05 (2023–24) FY: 2023–2024

RIVER RESEARCH INSTITUTE FARIDPUR-7800.

## CONTENTS

|     |                                             | PAGES    |
|-----|---------------------------------------------|----------|
| RE  | PORT                                        | 3        |
| AT  | <u> FACHMENT</u>                            | SHEET(S) |
| I   | : Particle Size Distribution Graph          | 15       |
|     |                                             |          |
|     |                                             |          |
| API | PENDIX PENDIX                               |          |
| A   | : BILL OF THIS REPORT NO. SOIL-05 (2023-24) | 01       |
| В   | : LIST OF PERSONNEL ASSOCIATED WITH WORK    | 01       |
| C   | · DECLUSITION I ETTED FOR THE WORKS         | 01       |

## REPORT

#### 1. INTRODUCTION

This report presents the results of soil tests carried out on the sub-surface soil samples collected from the location of Sandwip Channel and Feni River in connection with *River Bed's Soil Sample Test of Sandwip Channel and Feni River*. In this respect a total of fifteen (15) disturbed soil samples were received in the laboratory on 02/01/2024 from Managing Director, ECOSURV, Dhaka-1205 vide his office Memo No. 2023/RRI/003\_2, date. 31/12/2023.

#### 2. LABORATORY TESTS AND RESULTS

#### 2.1 Laser Diffraction Particle Size Analysis

Laser Diffraction Particle Size Analysis of the fiffteen (15) soil samples were done using Malvern Mastersizer 3000 instrument with HydroEv dispersion unit in the laboratory. This laser diffraction particle-size analyzer uses Mie theory and is able to effectively measure particles ranging from 0.01 - 3500µm in diameter. Two light sources, a red light with the wavelength of 633 nm and a LED blue light of 470 nm, are used in this instrument. Water was used as a dispersant and had a refractive index 1.33. The particle refractive index and the absorption index were set according to the laboratory trial depending on the visual inspection of the sample satisfying the weighted residual. Dry samples were added slowly to the dispersion unit until obtained the required obscuration range of the individual sample. During the measurement, 3000 rpm stirring speed and 4 minutes 100% ultrasound were used for sufficient dispersion of the soil sample. Five measurements have been performed and the results were averaged for the sample.

#### 2.2 Atterberg Limits Test

ASTM D 4318 method had been followed for the determination of Atterberg limits (plastic limit and liquid limit) of the samples. The detailed of the experimental procedures is described in the sections below. Out of fifteen (15) samples, thirteen (13) samples were considered for Atterberg limit tests. The other two (02) samples had been excluded for the test because of their non-cohesive nature.

#### 2.2.1 The Plastic Limit (PL)

The plastic limit was determined by alternately pressing together and rolling into a 3.2-mm (1/8-in.) diameter thread a small portion of the soil until its water content was reduced to a point at which the thread crumbles and can no longer be pressed together and rerolled. The water content of the soil at this point was the plastic limit of the samples. The determined values of plastic limits have been shown on the Table 1.

4

#### 2.2.2 The Liquid Limit (LL)

The Liquid Limit (LL) is the water content at which the soil changes from the liquid state to a plastic state. The Liquid limit test had been carried out on the soil samples according to multipoint liquid limit method (ASTM D4318). To perform the liquid limit test, soil samples were dried in a temperature controlled oven at 30°C until the soil clods pulverized readily. The samples were then crushed using mortar-pestle and passed through a 425-µm (No. 40) sieve. The soils were mixed with water to form a paste. The paste is then placed in a cup and a groove was made in the center of the paste using a grooving tool of 2 mm width. The cup was lifted and dropped from a height of 10 mm at a rate of 1.9 to 2.1 drops per second until the two halves of the soil pat come in contact at the bottom of the groove along a distance of 12.7 mm (1/2 in.). The number of blows, N were recorded. Water content of the soil specimen were determined. The relationship between the water content and the corresponding number of blows, on a semi-logarithmic graph with the water content as ordinates on the arithmetical scale and the number of drops as abscissas on a logarithmic scale. A best fit straight line was drawn through the three or more plotted points. The water content corresponding to the intersection of the line with the 25-drop abscissa was taken as the liquid limit of the soil. The determined values of liquid limits have been shown on the Table 1.



**Fig. 1.** Determination of liquid limit of soil specimen.

#### 2.3 Computation of Plasticity Index (PI)

Computation of Plasticity Index (PI) had been accomplished by using the following equation-

PI = PL - LL

The computed values of plasticity indices have been shown on the Table 1.

### 3. Test Results

Table 1. Values of Atterberg Limits and Plasticity Index of the examined soil samples

| Sample<br>ID | Depth (m) | Liquid Limit (%) | Plastic Limit (%) | Plasticity Index (%) |
|--------------|-----------|------------------|-------------------|----------------------|
| P01          | 3.0-3.5   | 37               | 27                | 10                   |
| P02          | 2.0-2.5   | 35               | 25                | 10                   |
| P03          | 1.5-2.0   | 28               | 22                | 6                    |
| P04          | 1.5-2.0   | 34               | 26                | 8                    |
| P05          | 1.5-2.0   | 45               | 24                | 21                   |
| P06          | 1.5-2.0   | 36               | 26                | 10                   |
| P07          | 1.5-2.0   | -                | -                 |                      |
| P08          | 1.5-2.0   | -                | N=                | -                    |
| P09          | 1.5-2.0   | 44               | 24                | 20                   |
| P10          | 1.5-2.0   | 34               | 26                | 8                    |
| P11          | 1.5-2.0   | 50               | 25                | 25                   |
| P12          | 1.5-2.0   | 49               | 24                | 25                   |
| P13          | 1.5-2.0   | 27               | 23                | 4                    |
| P14          | 1.5-2.0   | 47               | 23                | 24                   |
| P15          | 1.5-2.0   | 42               | 23                | 19                   |

### 5. APPENDIX

A: Soil Testing Bill of this report no. SOIL -05 (2023-24).

**B:** This is a list of personnel associated with testing works, preparation and publication of the report.

C: Requisition letter for the work.

Compiled by:

100

Checked by:

10.01.24

Recommended by:

Frentshens

(Uma Saha)

Director (In Charge)

Geotechnical Research Directorate River Research Institute

Faridpur



Measurement Details Measurement Details Operator Name Nayan Analysis Date Time 08-Jan-24 3:17:31 PM Sample Name Average of 'P-01' Measurement Date Time 08-Jan-24 3:17:31 PM SOP File Name HydroEV.cfg Result Source Averaged Analysis Result (D-Values) Particle Name Soil Dv (10) 4.35 μm Dv (50) 25.1 μm Analysis Model General Purpose Dv (60) 34.1 µm **Dispersant Name** Water Dispersant Refractive Index 1.330 Dv (90) 138 μm Weighted Residual 0.75 % Laser Obscuration 8.95 % Average - Oversize 100 Cumulative Volume (%) 0.01 0.1 1.0 10.0 100.0 1,000.0 10,000.0 Size Classes (µm) [44] Average of 'P-01'-08-Jan-24 3:17:31 PM Unified Soil Classification System Histogram Particle Type in % Clay (<2µm) 4.13 Silt (2 - 74µm) 74.42 Fine sand (74-420µm) 21.46 Medium sand (420-2000µm) 0 Coarse sand (2000-4760µm) 0 0.01 0.1 10.0 100.0 1,000.0 10,000.0 Size Classes (µm) [44] Average of 'P-01'-08-Jan-24 3:17:31 PM (Principal Scientific Officer) (Chief Scientific Officer) (Director (A.C.))





Measurement Details Measurement Details Analysis Date Time 08-Jan-24 12:46:14 PM Operator Name Nayan Measurement Date Time 08-Jan-24 12:46:14 PM Sample Name Average of 'P-02' Result Source Averaged SOP File Name HydroEV.cfg Result (D-Values) Analysis Dv (10) 4.94 µm Particle Name Soil Dv (50) 27.9 μm Analysis Model General Purpose Dv (60) 38.8 μm Dispersant Name Water Dv (90) 181 µm Dispersant Refractive Index 1.330 Weighted Residual 0.64 % Laser Obscuration 10.07 % Average - Oversize 100-Cumulative Volume (%) 10.0 1,000.0 10,000.0 1.0 100.0 0.01 0.1 Size Classes (µm) [36] Average of 'P-02'-08-Jan-24 12:46:14 PM Unified Soil Classification System Histogram in % Particle Type Clay (<2µm) 3.62 Silt (2 - 74µm) 70.27 Fine sand (74-420µm) 25.89 .22 Medium sand (420-2000µm) Coarse sand (2000-4760µm) 0 10.0 100.0 1,000.0 10,000.0 0.01 0.1 1.0 Size Classes (µm) [36] Average of 'P-02'-08-Jan-24 12:46:14 PM (Scientific Officer) (Senior Scientific Officer) (Principal Scientific Officer) (Chief Scientific Officer)





| Measurement Details                                           | Measurement Details                                                                   |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Operator Name Nayan Sample Name Average of 'P-03'             | Analysis Date Time 08-Jan-24 11:51:16 AM  Measurement Date Time 08-Jan-24 11:51:16 AM |
| SOP File Name HydroEV.cfg                                     | Result Source Averaged                                                                |
| Analysis                                                      | Result (D-Values)                                                                     |
| Particle Name Soil                                            | <b>Dv (10)</b> 3.78 μm                                                                |
| Analysis Model General Purpose                                | <b>Dv (50)</b> 18.3 μm                                                                |
| Dispersant Name Water                                         | <b>Dv (60)</b> 23.4 μm                                                                |
| Dispersant Refractive Index 1.330<br>Weighted Residual 1.20 % | <b>Dv (90)</b> 68.1 μm                                                                |
| Laser Obscuration 10.73 %                                     |                                                                                       |
| werage - Oversize                                             |                                                                                       |
| 100                                                           | <u> </u>                                                                              |
|                                                               |                                                                                       |
| 2                                                             |                                                                                       |
| Cumulative Volume (%)                                         |                                                                                       |
| 9 50                                                          | <u>\</u>                                                                              |
| ulativ                                                        |                                                                                       |
| Ğ.                                                            |                                                                                       |
|                                                               |                                                                                       |
| 0-                                                            |                                                                                       |
|                                                               | 1.0 10.0 100.0 1,000.0 10,000                                                         |
|                                                               | Size Classes (μm) — [4] Average of 'P-03'-08-Jan-24 11:51:16 AM                       |
| nified Soil Classification System                             | Histogram                                                                             |
| Particle Type in %                                            |                                                                                       |
| Clay (<2µm) 4.41                                              | 67                                                                                    |
| Silt (2 - 74µm) 86.8<br>Fine sand (74-420µm) 8.79             | <sup>∞</sup> 4−                                                                       |
|                                                               |                                                                                       |
|                                                               | Eng. 2-                                                                               |
| Medium sand (420-2000μm) 0                                    | % 4-<br>% 2-                                                                          |
| ledium sand (420-2000μm) 0                                    | 0 1 1.0 10.0 100.0 1,000.0 10,000                                                     |
| Medium sand (420-2000μm) 0                                    | 0                                                                                     |
| Medium sand (420-2000μm) 0                                    | 0.01 0.1 1.0 10.0 100.0 1,000.0 10,000                                                |
| ledium sand (420-2000μm) 0                                    | 0                                                                                     |
| ledium sand (420-2000μm) 0<br>oarse sand (2000-4760μm) 0      | 0                                                                                     |





Measurement Details Measurement Details Operator Name Nayan Analysis Date Time 08-Jan-24 12:52:39 PM Sample Name Average of 'P-04' Measurement Date Time 08-Jan-24 12:52:39 PM SOP File Name HydroEV.cfg Result Source Averaged Analysis Result (D-Values) Particle Name Soil Dv (10) 3.41 µm Dv (50) 18.9 μm Analysis Model General Purpose Dv (60) 25.0 μm Dispersant Name Water **Dispersant Refractive Index** 1.330 Dv (90) 111 μm Weighted Residual 0.78 % Laser Obscuration 10.65 % Average - Oversize 100 Cumulative Volume (%) 0.01 0.1 10.0 100.0 1,000.0 1.0 Size Classes (µm) - [40] Average of 'P-04'-08-Jan-24 12:52:39 PM Unified Soil Classification System Histogram Particle Type in % Clay (<2µm) 5.42 Silt (2 - 74µm) 78.95 Fine sand (74-420µm) 15.45 Medium sand (420-2000µm) .19 Coarse sand (2000-4760µm) 100.0 1,000.0 10,000.0 0.01 0.1 10.0 Size Classes (µm) [40] Average of 'P-04'-08-Jan-24 12:52:39 PM (Principal Scientific Officer) (Chief Scientific Officer)





Measurement Details Measurement Details Analysis Date Time 08-Jan-24 12:20:54 PM Operator Name Nayan Measurement Date Time 08-Jan-24 12:20:54 PM Sample Name Average of 'P-05' Result Source Averaged SOP File Name HydroEV.cfg Result (D-Values) Analysis Dv (10) 3.26 µm Particle Name Soil Dv (50) 16.9 μm Analysis Model General Purpose Dv (60) 21.6 μm Dispersant Name Water Dv (90) 58.4 μm Dispersant Refractive Index 1.330 Weighted Residual 0.82 % Laser Obscuration 10.34 % Average - Oversize Cumulative Volume (%) 100.0 1,000.0 0.01 0.1 1.0 10.0 Size Classes (µm) [20] Average of 'P-05'-08-Jan-24 12:20:54 PM Histogram Unified Soil Classification System Particle Type in % Clay (<2µm) 5.59 Silt (2 - 74µm) 87.74 Fine sand (74-420µm) 6.66 Medium sand (420-2000µm) 0 Coarse sand (2000-4760µm) 1,000.0 10,000.0 10.0 100.0 0.01 0.1 1.0 Size Classes (µm) [20] Average of 'P-05'-08-Jan-24 12:20:54 PM

(Principal Scientific Officer) > (Chief Scientific Officer)



(Scientific Officer)

(Senior Scientific Officer)



Measurement Details Measurement Details Operator Name Nayan Analysis Date Time 08-Jan-24 3:23:27 PM Sample Name Average of 'P-06' Measurement Date Time 08-Jan-24 3:23:27 PM SOP File Name HydroEV.cfg Result Source Averaged Analysis Result (D-Values) Particle Name Soil Dv (10) 3.07 μm Analysis Model General Purpose Dv (50) 17.0 μm **Dispersant Name** Water Dv (60) 23.5 μm Dispersant Refractive Index 1.330 Dv (90) 225 μm Weighted Residual 0.87 % Laser Obscuration 10.21 % Average - Oversize 100 Cumulative Volume (%) 0.01 0.1 1.0 10.0 100.0 1,000.0 10,000.0 Size Classes (µm) = [48] Average of 'P-06'-08-Jan-24 3:23:27 PM Unified Soil Classification System Histogram Particle Type in % Clay (<2µm) 5.95 Silt (2 - 74µm) 74.71 Fine sand (74-420µm) 17.89 Medium sand (420-2000µm) 1.45 Coarse sand (2000-4760µm) 0 0.01 0.1 1.0 10.0 100.0 1,000.0 10,000.0 Size Classes (µm) [48] Average of 'P-06'-08-Jan-24 3:23:27 PM (Senior Scientific Officer) (Principal Scientific Officer) (Chief Scientific Officer) (Director (A.C.))





| Measurement Details                                                                                            |                   | Measurement Details                                        |                                           |  |  |
|----------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------|-------------------------------------------|--|--|
| Operator Name Naya<br>Sample Name Aver                                                                         |                   | Analysis Date Time 08-Jan-2 Measurement Date Time 08-Jan-2 |                                           |  |  |
| SOP File Name Hydr                                                                                             |                   | Result Source Averaged                                     |                                           |  |  |
| nalysis                                                                                                        |                   | Result (D-Values)                                          |                                           |  |  |
| Particle Name Soil                                                                                             |                   | <b>Dv (10)</b> 15.0 μm                                     |                                           |  |  |
| Analysis Model Gene                                                                                            |                   | <b>Dv (50)</b> 142 μm                                      |                                           |  |  |
| Dispersant Name Water                                                                                          |                   | Dv (60) 162 µm                                             |                                           |  |  |
| Dispersant Refractive Index 1.330<br>Weighted Residual 0.38 %                                                  |                   | <b>Dv (90)</b> 254 μm                                      |                                           |  |  |
| Laser Obscuration 10.2                                                                                         |                   |                                                            |                                           |  |  |
| verage - Oversize                                                                                              |                   |                                                            |                                           |  |  |
| 100                                                                                                            |                   | I                                                          | Ĺ                                         |  |  |
| 100                                                                                                            |                   |                                                            | 3<br>3<br>1                               |  |  |
|                                                                                                                |                   |                                                            |                                           |  |  |
| (%)                                                                                                            |                   |                                                            |                                           |  |  |
| olume                                                                                                          |                   | \                                                          | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5   |  |  |
| 50 - 50                                                                                                        |                   |                                                            | -                                         |  |  |
| Cumulative Volume (%)                                                                                          |                   |                                                            |                                           |  |  |
| Ō                                                                                                              |                   | \                                                          |                                           |  |  |
|                                                                                                                |                   | \                                                          |                                           |  |  |
| 0                                                                                                              |                   |                                                            |                                           |  |  |
| 0.01 0.1                                                                                                       | 1.0               | 10.0 100.0 1,                                              | 000.0 10,000                              |  |  |
|                                                                                                                |                   | ze Classes (μm)<br>-07'-08-Jan-24 3:38:18 PM               |                                           |  |  |
|                                                                                                                |                   |                                                            |                                           |  |  |
|                                                                                                                | [sq/melage of     |                                                            |                                           |  |  |
|                                                                                                                | [50] Acting to 1  | Histogram                                                  |                                           |  |  |
| Particle Type in %                                                                                             | [50] Acting Co.   | Histogram                                                  | 4                                         |  |  |
| Particle Type in % Clay (<2µm) .92                                                                             | [50] Acting Co. A | 10                                                         | 4                                         |  |  |
| Particle Type in % Clay (<2µm) .92 Silt (2 - 74µm) 20.15 Fine sand (74-420µm) 78.93                            | jojintingeo       | 10                                                         |                                           |  |  |
| Particle Type in % Clay (<2μm) .92 Silt (2 - 74μm) 20.15 Fine sand (74-420μm) 78.93 dium sand (420-2000μm) 0   | joj nenge o       | 10                                                         |                                           |  |  |
| Particle Type in % Clay (<2μm) .92 Silt (2 - 74μm) 20.15 Fine sand (74-420μm) 78.93 dium sand (420-2000μm) 0   | joginenge         | 10 \\ 8 - \\ 6 - \\ 4 - \\ 2 - \\                          |                                           |  |  |
| Particle Type in % Clay (<2μm) .92 Silt (2 - 74μm) 20.15 Fine sand (74-420μm) 78.93 dium sand (420-2000μm) 0   | joj neoge o       | 8-<br>8-<br>6-<br>4-<br>2-<br>0                            |                                           |  |  |
| Clay (<2 \mum m) .92 Silt (2 - 74 \mum m) 20.15 Fine sand (74-420 \mum m) 78.93 edium sand (420-2000 \mum m) 0 | joginenge         | 8-<br>8-<br>6-<br>4-<br>2-<br>0                            | 10.0 100.0 1,000.0 10,000<br>Classes (μm) |  |  |





Measurement Details Measurement Details Analysis Date Time 08-Jan-24 3:46:53 PM Operator Name Nayan Measurement Date Time 08-Jan-24 3:46:53 PM Sample Name Average of 'P-08' Result Source Averaged SOP File Name HydroEV.cfg Result (D-Values) Analysis Dv (10) 34.7 μm Particle Name Soil Dv (50) 172 μm Analysis Model General Purpose Dv (60) 191 µm Dispersant Name Water Dv (90) 277 μm Dispersant Refractive Index 1.330 Weighted Residual 0.39 % Laser Obscuration 9.68 % Average - Oversize 100 Cumulative Volume (%) 1,000.0 100.0 10,000.0 0.1 1.0 0.01 Size Classes (µm) [60] Average of 'P-08'-08-Jan-24 3:46:53 PM Histogram Unified Soil Classification System in % Particle Type 15 .21 Clay (<2µm) Volume (%) Silt (2 - 74µm) 10.77 Fine sand (74-420µm) 89.02 Medium sand (420-2000µm) 0 Coarse sand (2000-4760µm) 0 10.0 100.0 1,000.0 10,000.0 0.01 0.1 1.0 Size Classes (µm) [60] Average of 'P-08'-08-Jan-24 3:46:53 PM (Principal Scientific Officer) (Chief Scientific Officer) (Senior Scientific Officer)



Measurement Details Measurement Details Analysis Date Time 08-Jan-24 12:08:17 PM Operator Name Nayan Measurement Date Time 08-Jan-24 12:08:17 PM Sample Name Average of 'P-09' Result Source Averaged SOP File Name HydroEV.cfg Result (D-Values) Analysis Dv (10) 3.26 μm Particle Name Soil Dv (50) 17.5 μm Analysis Model General Purpose Dv (60) 22.8 μm Dispersant Name Water Dv (90) 66.6 μm Dispersant Refractive Index 1.330 Weighted Residual 0.77 % Laser Obscuration 18.25 % Average - Oversize 100

| 50   | 4.<br>1.<br>1.                        |                                                    | 1<br>1<br>1<br>4 |      |       |         |       |
|------|---------------------------------------|----------------------------------------------------|------------------|------|-------|---------|-------|
| 50   |                                       |                                                    |                  |      |       |         |       |
|      |                                       |                                                    |                  |      |       |         |       |
|      |                                       |                                                    |                  |      |       |         | 1720  |
| ,    |                                       |                                                    |                  |      |       |         |       |
| ,    | E E E E E E E E E E E E E E E E E E E |                                                    |                  |      |       |         |       |
| 0.01 | 0.1                                   | <del>- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</del> | 1.0              | 10.0 | 100.0 | 1,000.0 | 10,00 |

| Particle Type                                                                                                  | in %  |
|----------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                |       |
| Clay (<2µm)                                                                                                    | 5.55  |
| Silt (2 - 74µm)                                                                                                | 85.79 |
| Fine sand (74-420µm)                                                                                           | 8.61  |
| Medium sand (420-2000µm)                                                                                       | .05   |
| Coarse sand (2000-4760µm)                                                                                      | 0     |
| Secure and a second |       |





(Senior Scientific Officer)

(Principal Scientific Officer) \* (Chief Scientific Officer)

(Director (A.C.))









Measurement Details Measurement Details Analysis Date Time 08-Jan-24 12:39:03 PM Operator Name Nayan Sample Name Average of 'P-10' Measurement Date Time 08-Jan-24 12:39:03 PM SOP File Name HydroEV.cfg Result Source Averaged Analysis Result (D-Values) Particle Name Soil Dv (10) 4.72 μm Dv (50) 30.8 μm Analysis Model General Purpose Dv (60) 41.9 μm Dispersant Name Water Dv (90) 167 μm Dispersant Refractive Index 1.330 Weighted Residual 0.63 % Laser Obscuration 9.41 % Average - Oversize 100 Cumulative Volume (%) 100.0 0.01 1.0 10.0 1,000.0 10.000.0 0.1 Size Classes (µm) — [32] Average of 'P-10'-08-Jan-24 12:39:03 PM Unified Soil Classification System Histogram Particle Type in % Clay (<2µm) 3.68 Silt (2 - 74µm) 71.83 Fine sand (74-420µm) 24.4 Medium sand (420-2000µm) .1 Coarse sand (2000-4760µm) 0 THIND THIND 1,000.0 10,000.0 0.01 0.1 1.0 10.0 100.0 Size Classes (µm) [32] Average of 'P-10'-08-Jan-24 12:39:03 PM

(Scientific Officer)

(Senior Scientific Officer)

(Principal Scientific Officer) (Chief Scientific Officer)

(Director (A.C.))







| Operator Name Nayan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analysis Date Time 08-Jan-24 12:33:01 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Sample Name Average of 'P-11'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Measurement Date Time 08-Jan-24 12:33:01 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| SOP File Name HydroEV.cfg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result Source Averaged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result (D-Values)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Particle Name Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Dv (10)</b> 2.87 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Analysis Model General Purpose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Dv (50)</b> 14.4 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Dispersant Name Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Dv (60)</b> 18.2 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Dispersant Refractive Index 1.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Dv (90)</b> 42.6 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Weighted Residual 0.91 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Laser Obscuration 9.71 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| verage - Oversize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| ž l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Cumulative Volume (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 0.01 0.1 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.0 100.0 1,000.0 10,000<br>Size Classes (μm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.0 100.0 1,000.0 10,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 0.01 0.1 1.0 — [6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0 100.0 1,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10 |  |  |  |
| 0.01 0.1 1.0 — [6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0 100.0 1,000.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 |  |  |  |
| 0 0.01 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 | 10.0 100.0 1,000.0 100.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,00 |  |  |  |
| 0 0.01 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.0 100.0 1,000.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 |  |  |  |
| 0 0.01 0.1 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0 100.0 1,000.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 |  |  |  |
| 0 0.01 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.0 100.0 1,000.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 |  |  |  |
| 0 0.01 0.1 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.0 100.0 1,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 1  |  |  |  |
| 0 0.01 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.0 100.0 1,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10 |  |  |  |
| 0 0.01 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.0 100.0 1,000.0 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,0 |  |  |  |
| 0 0.01 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.0 100.0 1,000.0 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,0 |  |  |  |
| 0 0.01 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.0 100.0 1,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10,000.0 10 |  |  |  |





Measurement Details Measurement Details Analysis Date Time 08-Jan-24 12:26:05 PM Operator Name Nayan Sample Name Average of 'P-12' Measurement Date Time 08-Jan-24 12:26:05 PM SOP File Name HydroEV.cfg Result Source Averaged Analysis Result (D-Values) Dv (10) 3.66 μm Particle Name Soil Analysis Model General Purpose Dv (50) 19.4 μm Dispersant Name Water Dv (60) 24.4 μm Dispersant Refractive Index 1.330 Dv (90) 57.8 μm Weighted Residual 0.77 % Laser Obscuration 9.76 % Average - Oversize 100 Cumulative Volume (%) 0.01 100.0 0.1 1.0 10.0 1,000.0 10,000,0 Size Classes (µm) [24] Average of 'P-12'-08-Jan-24 12:26:05 PM Unified Soil Classification System Histogram Particle Type in % Clay (<2µm) 4.88 Silt (2 - 74µm) 89.34 Fine sand (74-420µm) 5.78 Medium sand (420-2000µm) 0 Coarse sand (2000-4760µm) 0 0.01 0.1 10.0 100.0 1,000.0 10,000.0 Size Classes (µm) [24] Average of 'P-12'-08-Jan-24 12:26:05 PM (Senior Scientific Officer) (Principal Scientific Officer) (Chief Scientific Officer) (Director (A.C.))





Measurement Details Measurement Details Analysis Date Time 08-Jan-24 3:30:12 PM Operator Name Nayan Sample Name Average of 'P-13' Measurement Date Time 08-Jan-24 3:30:12 PM SOP File Name HydroEV.cfg Result Source Averaged Analysis Result (D-Values) Particle Name Soil Dv (10) 3.46 µm Dv (50) 19.7 μm Analysis Model General Purpose Dv (60) 28.0 µm **Dispersant Name** Water Dispersant Refractive Index 1.330 Dv (90) 211 μm Weighted Residual 0.81 % Laser Obscuration 9.36 % Average - Oversize 100 Cumulative Volume (%) 10.0 10,000.0 0.01 0.1 1.0 100.0 1,000.0 Size Classes (µm) = [52] Average of 'P-13'-08-Jan-24 3:30:12 PM Unified Soil Classification System Histogram Particle Type in % Clay (<2µm) 5.14 Silt (2 - 74µm) 71.09 Fine sand (74-420µm) 22.63 Medium sand (420-2000µm) 1.14 Coarse sand (2000-4760µm) 0 1,000.0 10,000.0 0.01 0.1 10.0 100.0 Size Classes (µm) [52] Average of 'P-13'-08-Jan-24 3:30:12 PM (Senior Scientific Officer) (Principal Scientific Officer) (Chief Scientific Officer) (Director (A.C.))



Measurement Details Measurement Details Analysis Date Time 08-Jan-24 12:00:02 PM Operator Name Nayan Sample Name Average of 'P-14' Measurement Date Time 08-Jan-24 12:00:02 PM SOP File Name HydroEV.cfg Result Source Averaged Analysis Result (D-Values) Particle Name Soil Dv (10) 2.99 µm Dv (50) 16.5 μm Analysis Model General Purpose Dv (60) 21.7 μm Dispersant Name Water Dv (90) 64.6 μm Dispersant Refractive Index 1.330 Weighted Residual 0.88 % Laser Obscuration 12.43 % Average - Oversize 100 Cumulative Volume (%) 0.01 1.0 10.0 100.0 1,000.0 10,000.0 0.1 Size Classes (µm) [8] Average of 'P-14'-08-Jan-24 12:00:02 PM Unified Soil Classification System Histogram Particle Type in % Clay (<2µm) 6.16 Silt (2 - 74µm) 85.77 Fine sand (74-420µm) 7.91 Medium sand (420-2000µm) .16 Coarse sand (2000-4760µm) 0 0.01 0.1 1.0 10.0 100.0 1,000.0 10,000.0 Size Classes (µm) [8] Average of 'P-14'-08-Jan-24 12:00:02 PM (Senior Scientific Officer) (Principal Scientific Officer) (Chief Scientific Officer) (Director (A.C.))





| Operator Name Nayan                                              | Analysis Date Time 08-Jan-24 12:14:40 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Name Average of 'P-15'                                    | Measurement Date Time 08-Jan-24 12:14:40 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SOP File Name HydroEV.cfg                                        | Result Source Averaged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nalysis                                                          | Result (D-Values)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Particle Name Soil                                               | <b>Dv (10)</b> 4.15 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Analysis Model General Purpose                                   | <b>Dv (50)</b> 22.1 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dispersant Name Water                                            | <b>Dv (60)</b> 27.4 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dispersant Refractive Index 1.330                                | <b>Dv (90)</b> 65.1 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Weighted Residual 0.74 %                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Laser Obscuration 9.99 %                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| verage - Oversize                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cumulative Volume (%)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Voiti                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| § 50                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| eg .                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 <del>                                     </del>               | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.01 0.1 1.0                                                     | 10.0 100.0 1,000.0 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 161 Average                                                      | Size Classes (μm)<br>ge of 'P-15'-08-Jan-24 12:14:40 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                  | e of the Devolute and the light of the light |
| nified Soil Classification System                                | Histogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Particle Type in %                                               | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Clay (<2µm) 4.42                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Silt (2 - 74μm) 87.93                                            | (% 4-<br>Molecules 4-<br>2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fine sand (74-420µm) 7.65<br>edium sand (420-2000µm) 0           | ال المالية الم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| parse sand (2000-4760µm) 0                                       | § 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| and Leave Troughty                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                  | 0-  1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                  | Size Classes (μm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                  | [16] Average of 'P-15'-08-Jan-24 12:14:40 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Scientific Officer) (Senior Scientific Officer) (Principal Scien | ntific Officer) (Chief Scientific Officer) (Director (A.C.))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



Soil Testing Bill



## Geo-Technical Research Director River Research Institute

Project name:

River Bed's Soil Sample Test of Sandwip Channel and Feni River

Client:

Managing Director, ECOSURV, Dhaka.

Memo No-2023/RRI/003 2

Report no:

Soil- 05 (2023-24)

Date: 04/01/2024

| Sl.No. | Name of Test                                | Rate per Samples in<br>Taka | Number of samples | Testing fee<br>Taka |
|--------|---------------------------------------------|-----------------------------|-------------------|---------------------|
| 1.     | Specific Gravity (Gs.)                      | 1725.00                     |                   |                     |
| 2.     | Natural Moisture Content                    | 825.00                      |                   |                     |
|        | Mechanical Analysis                         |                             |                   |                     |
| 3.     | a) Visual Inspection & Classification       |                             |                   |                     |
| J.     | (i) Disturbed Sample                        | 300.00                      | 15                | 4500                |
|        | (ii) Undisturbed Sample                     | 500.00                      |                   |                     |
|        | b) Sieve Analysis                           | 2850.00                     |                   |                     |
|        | c) Hydrometer Analysis (Excluding Gs.)      | 2850.00                     |                   |                     |
|        | d) Sieve & Hydrometer Analysis              | 5250.00                     |                   |                     |
|        | e) Particle Size Analysis by Particle Size  | 6000.00                     | 15                | 90000               |
|        | Analyzer (Mastersizer 3000)                 |                             |                   |                     |
| 4.     | Unit Weight                                 | 1650.00                     |                   |                     |
| 5.     | Loss-on-Ignition                            | 3375.00                     |                   |                     |
| 6.     | Liquid Limit & Plastic Limit Combined       | 3750.00                     | 13                | 48750               |
| 7.     | Shrinkage Limit                             | 1500.00                     |                   |                     |
| 8.     | Consolidation Test                          | 22500.00                    |                   |                     |
|        | (not excluding 6 loads + 2 unloads)         |                             |                   |                     |
| 9.     | Direct Shear Test (3-point)                 | 12000.00                    |                   |                     |
|        | Triaxial Shear Test (for 3-specimen)        |                             |                   |                     |
|        | a) Unconsolidated Undrained                 | 18000.00                    |                   |                     |
| 10.    | b) Consolidated Undrained (without P.P.)    | 31500.00                    |                   |                     |
|        | c) Consolidated Undrained (with P.P.)       | 39000.00                    |                   | _                   |
|        | d) Consolidated Drained Test                | 39000.00                    |                   | ,                   |
| 11.    | Vane Shear Test                             | 8500.00                     |                   |                     |
| 12.    | Unconfined Compression Test/Remolded        | 6000.00                     |                   |                     |
|        | a) Standard AASHO (4" diamould)             | 11250.00                    |                   |                     |
|        | b) Standard AASHO (6" diamould)             | 11250.00                    |                   |                     |
| 13.    | c) Modified AASHO (4" diamould)             | 15000.00                    |                   |                     |
|        | d) Modified AASHO (6" diamould)             | 15000.00                    |                   |                     |
|        | e) Field Density per spot                   | 4950                        |                   |                     |
| 1.4    | a) Pepmeability Test for Non-Cohesive       | 8850.00                     |                   |                     |
| 14.    | b) Permeability Test for Cohesive Soils     | 16500.00                    |                   |                     |
| 15.    | Density Index                               | 6750.00                     |                   |                     |
| 16.    | C.B.R. Test                                 | 22500.00                    |                   |                     |
| 17.    | Laboratory Boring Log (per sheet)           | 225.00                      | ****              |                     |
|        |                                             |                             | al Fee (Taka)     | 143250.0            |
|        | After 25% discount as per MoU between RRI & |                             |                   |                     |

S. 1201 3034

04.01.24

Frutshazóz4

Q04.01.2024

## APPENDIX-B

List of personnel responsible for testing works preparation and publication of the report.

| 1.  | Uma Saha                       | Director (In Charge) |
|-----|--------------------------------|----------------------|
| 2.  | Engr. Md. Matiar Rahman Mondol | PSO                  |
| 3.  | Dr. Fatima Rukshana            | PSO                  |
| 4.  | Mohammad Dulal Bawali          | SSO                  |
| 5.  | Md. Moniruzzaman               | SSO                  |
| 6.  | Engr. Khondoker Rajib Ahmed    | SSO                  |
| 7.  | Engr. Sumiya Ferdhous          | SO                   |
| 8.  | Kazi Md. Shahajahan            | ST-C                 |
| 9.  | A.B.M Tazul Islam Bhuiyan      | ST-B                 |
| 10. | Md. Abu Bakker Siddique        | ST-B                 |
| 11. | Md. Nazrul Islam               | ST-B                 |
| 12. | Md. Rejaul Karim               | LT-B                 |
| 13. | Md. Mahbubul Alam              | ST-A.                |
| 14. | Sheikh Md. Rasel               | LT-A                 |
| 15. | Md. Ikramul Haque              | LT-A                 |
| 16. | Md. Jamal Uddin                | Office Assistant.    |
| 17. | Md. Mahbubur Rahman            | Office Assistant     |







Apt. No. 5A, 5th Floor, House No. 142/A, Green Road, Dhaka – 1205, Bangladesh

Soil-05 (2023-24)

Ref.: 2023/RRI/003\_2

Date: 31.12.2023

Director General River Research Institute Faridpur, Bangladesh.

Subject:

River Bed's Soil Sample Test of Sandwip Channel and Feni River.

D (1000)

Dear Sir,

Assalamualaikum, Hope you are well in all respect.

As discussed in the meeting on 18.12.2023 we are sending the collected samples for Laboratory testing of the mentioned tests. Hopefully the samples qty will be 100 Nos. Now the samples are collecting from the rivers and will be sent sequentially.

- 1. Soil Particle Distribution test by
- 2. Atterberg Limit Test

As discussed, please fix a negotiated rate for the tests. It will be helpful to us if you kindly fix the rate 50% of the scheduled rate.

#### Samples ID is -

- 1. P01-Depth 3.0-3.5m, Sandwip Channel Coordinate E 343060m, N 2510140m
- P02-Depth 2.0-2.5m, Sandwip Channel Coordinate E 343902m, N 2509584m
- P03-Depth 1.5-2.0m, Sandwip Channel Coordinate E 344525m, N 2509270m
- 4. P04-Depth 1.5-2.0m, Sandwip Channel Coordinate E 344994m, N 2509870m
- 5. P05-Depth 1.5-2.0m, Sandwip Channel Coordinate E 344358m, N 2510292m
- 6. P06-Depth 1.5-2.0m; Sandwip Channel Coordinate E 343577m, N 2510836m
- 7. P07-Depth 1.5-2.0m, Feni River Coordinate E 337494m, N 2517437m
- 8. P08-Depth 1.5-2.0m, Feni River Coordinate E 337966m, N 2517690m
- 9. P09-Depth 1.5-2.0m, Feni River Coordinate E 340016m, N 2520055m
- 10. P10-Depth 1.5-2.0m, Feni River Coordinate E 340181m, N 2520591m
- 11. P11-Depth 1.5-2.0m, Sandwip Channel Coordinate E 341387m, N 2508117m
- 12. P12-Depth 1.5-2.0m, Sandwip Channel Coordinate E 343570m, N 2506736m
- 13. P13-Depth 1.5-2.0m, Sandwip Channel Coordinate E 348406m, N 2508067m
- 14. P14-Depth 1.5-2.0m, Sandwip Channel Coordinate E 347466m, N 2506970m
- 15. P15-Depth 1.5-2.0m, Sandwip Channel Coordinate E 348528m, N 2507045m

Thanks again for everything. Wishing you all the best and good health. Your kind cooperation in this regard will be highly appreciated.

Best Regards,

- HANCIII

(Engr. Md. Shamsul Alam) Managing Director, ECOSURV +8801711111497 200 poors SSOR Severoling

Page No. 1 of 1